Biomimetism, biomimetic matrices and the induction of bone formation
نویسنده
چکیده
INTRODUCTION the induction of bone formation, the emergence of the skeleton, of the vertebrates and of Homo species * Different strategies for the induction of bone formation. Biological significance of redundancy and synergistic induction of bone formation. Biomimetism and biomimetic matrices self-assembling the induction of bone formation The concavity: the shape of life and the induction of bone formation. Influence of geometry on the expression of the osteogenic phenotype. Conclusion and therapeutic perspectives on porous biomimetic matrices with intrinsic osteoinductivity Bone formation by induction initiates by invocation of osteogenic soluble molecular signals of the transforming growth factor-beta (TGF-beta) superfamily; when combined with insoluble signals or substrata, the osteogenic soluble signals trigger the ripple-like cascade of cell differentiation into osteoblastic cell lines secreting bone matrix at site of surgical implantation. A most exciting and novel strategy to initiate bone formation by induction is to carve smart self-inducing geometric concavities assembled within biomimetic constructs. The assembly of a series of repetitive concavities within the biomimetic constructs is endowed with the striking prerogative of differentiating osteoblast-like cells attached to the biomimetic matrices initiating the induction of bone formation as a secondary response. Importantly, the induction of bone formation is initiated without the exogenous application of the osteogenic soluble molecular signals of the TGF-beta superfamily. This manuscript reviews the available data on this fascinating phenomenon, i.e. biomimetic matrices that arouse and set into motion the mammalian natural ability to heal thus constructing biomimetic matrices that in their own right set into motion inductive regenerative phenomena initiating the cascade of bone differentiation by induction biomimetizing the remodelling cycle of the primate cortico-cancellous bone.
منابع مشابه
Biomimetic matrices self-initiating the induction of bone formation.
The new strategy of tissue engineering, and regenerative medicine at large, is to construct biomimetic matrices to mimic nature's hierarchical structural assemblages and mechanisms of simplicity and elegance that are conserved throughout genera and species. There is a direct spatial and temporal relationship of morphologic and molecular events that emphasize the biomimetism of the remodeling cy...
متن کاملThe induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus
Long-term studies in the non-human primate Chacma baboon Papio ursinus were set to investigate the induction of bone formation by biphasic hydroxyapatite/p-tricalcium phosphate (HA/beta-TCP) biomimetic matrices. HA/beta-TCP biomimetic matrices in a pre-sinter ratio (wt%) of 40/60 and 20/80, respectively, were sintered and implanted in the rectus abdominis and in calvarial defects of four adult ...
متن کاملInduction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin
Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...
متن کاملHydroxyapatite - starch nano biocomposites synthesis and characterization
Bone like hydroxyapatite (nHAp) was synthesized via an in situ biomimetic process in presence of wheat starch. The effect of polymer concentration alteration on the final structure of nHAp was investigated. Formation of the nHAp at room temperature was confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Size and morphology of the nHAp samples were character...
متن کامل